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Abstract 

The most widespread application of the rotation func- 
tion is the determination of the relative orientation 
of a given search fragment in the unit cell of an 
unknown crystal structure [Rossmann & Blow (1962). 
Acta Cryst. 15, 24-31]. Here a modification is presen- 
ted of the rotation function for this specific applica- 
tion, which exploits the information of the intensity 
data more effectively, thus leading to a higher signal 
size with the same computing cost. 

1. Introduction 

Although the primary phasing of intensity data 
from small equal-atom structures and from 
macromolecular compounds is normally carried out 
using either direct methods or the multiple isomor- 
phous-replacement technique, molecular-replace- 
ment techniques are increasingly used when a suitable 
search fragment (or model) is available. Besides the 
crystal symmetry, the principal factors determining 
the success of molecular-replacement methods are, 
on the one hand, the ~ize, the form and the accuracy 
of the search fragment and, on the other hand, the 
number and reciprocal-space distribution of the 
measured intensities. In general, the larger and more 
accurately known the fragment is, the less drastic are 
the requirements imposed on the intensity data. 

As is well known, the real-space formulation of the 
rotation function of Rossmann & Blow (1962) for the 
case where a suitable search model is available is 

R(~)oc ~ Po(u)Pmode,(~u)du. (1) 
u 

The integral in (1) measures the agreement of the 
Patterson function of the unknown crystal structure 
(Po) with the rotated Patterson function of the iso- 
lated search model (Pmodel) in a region U around the 
origin of the unit cell. The symbol ~ denotes a rota- 
tion operator that rotates the coordinate system of 
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the search model with respect to that of the unknown 
crystal structure. R(/2) will have a large maximum 
when the two Patterson functions are brought into 
maximum coincidence. If U corresponds to the whole 
unit cell, (1) can be expressed in reciprocal space as 
the summation 

X IFo(H)I21Sff , a)l (2) 
H 

where [Fo(H)[ 2 and ]S(H)] 2 are, respectively, the 
Fourier coefficients of the observed and the model 
Patterson functions (Tollin & Cochran, 1964). IS(H)[ 2 
can be written in the form 

IS(H) 2= ~ ~ ZjZk COS (2~rn. rig) (3) 
j=l k=l 

with n being the number of atoms of the fragment, 
Zj being the atomic number of the jth atom and rjk 
denoting the difference vector r j - rk ,  where rj is the 
position vector of the jth atom referred to a fixed 
local origin. 

Inspection of (2) reveals that the contribution to 
the H summation of those terms with small [Fo(H)[ 2 
values is not significant. Consequently, it seems rea- 
sonable to expect an increased signal size if the rota- 
tion function (2) is modified to include additionally 
the significant contribution of the weak reflections. 
In practice, this modification can be useful in those 
cases where only a small intensity data set is available, 
as is typical for low-resolution X-ray powder diffrac- 
tion data of organic compounds (Rius & Miravitlles, 
1988; Wilson & Wadsworth, 1990; Rius, Miravitlles, 
Molins, Crespo & Veciana, 1990; Amig6, Ochando, 
Abarca, Ballesteros & Rius, 1992). Owing to the 
reduced number of available intensities, the most 
difficult step is the rotation search. The subsequent 
fragment positioning is greatly simplified with the 
combined use of translation and packing functions 
(Harada, Lifchitz, Berthou & Jolles, 1981; Stubbs & 
Huber, 1991) as well as with the calculation of the R 
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value for the higher-ranked solutions found with the 
r translation function (Rius & Miravitlles, 1986). 

2. Definition of the rotation function incorporating 
weak reflections 

Let F(H) represent the structure factor of a structure 
consisting of N point atoms in the unit cell. Assume 
that some of them are in a correctly oriented but 
randomly positioned fragment (plus the symmetri- 
cally related ones) and that the rest of the atoms are 
randomly distributed in the cell. On the basis of this 
prior information, the expected value of IF(H)I 2 is 
given by the expression (see the Appendix) 

N m 

IF(H) ~xp= e(H) ~ Z ]+2e(H) ~ ~ ~ ZjZk 
j----I p = l  j - --I  k = l  

k>j 

x cos (27rHRp. rjk), (4) 

where e (H) is an enhancement factor dependent upon 
the reflection type and the space group (Stewart, 
Karle, Iwasaki & Ito, 1977) and m is the number of 
point-group symmetry operators. Expression (4) 
allows the calculation of the value of IF(H,/2) 2xp 
for each orientation ~ of the model specified by the 
set of intrafragment vectors. 

Now let D(H, ~ )  be defined as 

D(H,O)=IF(H,,O) 2xp/e(H) (5) 

and let h and l represent those reflections having 
sharpened ]Fo(H)[2/e(n) values greater and smaller, 
respectively, than the cut-off value 2 Fmi.. With (4) and 
(5) taken into account, the rotation function (2) can 
then be approximated as the summation 

E Fo(h) 2D(h, O) 
h 

N 

= c  ~'. Z2+2m ~ ~. Z.jZk 
j = l  j = l  k = l  

k> j  

xZlFo(h)12cos[2zrh'rjk(n)], (6) 
h 

where 

c = E {Fofh)l ~. (7) 
h 

Similarly, the weighted mean value of D(I, O) is given 
by 

E w(l)D(l, g2)/d 
I 

= ~ Z2+(2m/d)~ ~ ZjZk 
j = l  j = l  k = l  

k>j 

x ~  w(l) cos [27rl • rjk(~)], (8) 
I 

where 

d = ~ w(l). (9) 
I 

Since l represents the weak reflections, (8) will have 
a minimum for the correct model orientation, i.e. the 
summation of cosine terms will be predominantly 
negative. For incorrect orientations, however, this 
summation will tend to zero. The weights w(l) are 
assumed to be unity in the present paper, but other 
weighting schemes can also be contemplated, e.g. 
w(l)=llFo(l)12-1Fl~a,,I with IFI]v being the average 
value of IFo(H)I 2 over all H. 

Next, we can define the rotation function ~ ( O )  
actively incorporating the weak reflections. It results 
from the combination of (6) with (8): 

~(o) -- y. I Fo (h) 12 D(h, O) 
h 

-(c/d) E w(l)D(l, g2) (10a) 
I 

=2m ~ ~ ZjZkI~., IFo(h)l 2 
j = l  k = l  t h  

k>j 

xcos[2zrh.rjk(O)]-(c/d) ~, w(l) 
I 

x cos  [2¢ r l .  rjk(O)]} (10b) 

and, like R(O), this function will have a maximum 
for the correct model orientation. The higher signal 
size comes from the larger number of observations 
involved in the calculation of ~ ( O )  as compared 
with R (~).  

Finally, if 8Po is a modified Patterson function with 
Fourier coefficients IFo(h)[ 2 and -w(I)c/d, then (10b) 
reduces, when proportionality constants are ignored, 
to 

~ ( a ) =  ~ ~ ZjZkSPo[rjk([2)]. (lOc) 
j = l  k = l  

k>j 

The symbol 8 has been introduced to emphasize the 
'difference' nature of this Patterson function. Since 
8Po vanishes at the origin, the difficulty arising from 
the presence of intrafragment vectors longer than a 
lattice constant, and the subsequent possible overlap 
of these vectors with the Patterson origin peaks of 
neighbouring cells, is minimized. 

3. Test calculations 

This modification has been tested with the structures 
of cortisone (Declercq, Germain & Van Meerssche, 
1972), C21H2805, space group P21212~, Z = 4; loganin 
(Jones, Sheldrick, Gliisenkamp & Tietze, 1980), 
C 1 7 H 2 6 0 1 o  , space group P2~212~, Z -- 4; and NEWQB 
(Grigg, Kemp, Sheldrick & Trotter, 1978), 
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C24H2oN2Os, space group P1, Z = 4. In all three cases, 
the BPo function was calculated using sharpened 
intensity data at 1.00 A resolution and with a grid 
size of 0.25 A to avoid the need for interpolation. The 
systematically absent reflections have been removed 
in each case. All calculations were performed with 
an adapted version of ROTSEARCH (Rius & 
Miravitlles, 1987). 

The signal size H of the tested rotation function 
is defined as [ ~ ( J 2 ) - ~ ] / t r ,  where ~ and o "2 are, 

respectively, the mean value and the associated vari- 
ance obtained from averaging ~ ( ~ )  over all the 
33 552 scanned model orientations [mean rotation 
increment = 7°]. 

The cortisone model (scattering power 42%) was 
obtained by arbitrary rotation of the unrefined coor- 
dinates taken from an E map of the structure. The 
atomic coordinates of the loganin and NEWQB frag- 
ments with respective scattering powers of 28 and 
12% were derived by application of an arbitrary 
rotation to the published ones. The minimum and 
maximum lengths of the selected intrafragment vec- 
tors are 1.9 and 6.0/~. 58 vectors were studied for the 
cortisone model, 26 for loganin and 19 for NEWQB. 

Since the search fragments of cortisone and loganin 
are relatively large, the first rotation-function solu- 
tions produced by (6) and (10c) are the correct ones. 
For NEWQB, the correct orientation always corre- 

l (a) 

4. S ' ' "  0 . . . . . . . . . . . .  0 . . . . . . . . . . .  - O  

o 2 6 
l (b) 

H 

3. 
/ . . .~ . . . . . . . . . .  0 . . . . . . . . . .  0 

0 2 6 
(¢) 

3 ' l l -  ~ 

2'0 2 6 
Fmin 

Fig. 1. Application to three test examples of the rotation function 
computed with (10c) (solid line) and with (6) (dashed line) for 
different cut-off values Fmin. H:  signal size for the correct 
solution given in units of or above the mean. (a) Cortisone, 
model scattering power (m.s.p.) 42%; (b) loganin, m.s.p. 28%; 
(c) NEWQB, m.s.p. 12%. Notice that in all three examples the 
signal size of (10c) is the highest. 

sponds to one of the first three solutions, depending 
on the value of Fmi, used. The rotation angles J2 
obtained with (10c) are not significantly different 
from those obtained with (6). Inspection of Fig. 1 
clearly indicates that, as expected, the rotation func- 
tion (10c) yields a higher signal size than the rotation 
function (6). 

This work was supported by the DGICYT (Project 
PB89-0036). 

APPENDIX 

The expected value of [F(H)[ 2, given a well oriented 
but randomly positioned group 

Let us assume, for simplicity, that the unit cell con- 
tains only one symmetrically independent molecular 
group, from which the orientation but not the position 
r is known. If e (H) is the enhancement factor, which 
is the number of rotation matrices for which H R  = H 
and H . t - - 0  (mod 1) (Hovm611er, 1980), then the 
squared amplitude of the structure factor can be 
written in the form 

m/eH 

F(H)I2= ~(H) Z Sp(H) 
p=l 

xexp[i2~rt t . (Rpr+tp)]  , (A.1) 

where Sp is the structure factor of the pth molecular 
group and m is the number of point-group symmetry 
operators. For general reflections, e(t t)  is unity. 
Equation (A.1) then becomes 

mle H mle H 

IF(H)[ 2= e(n) 2 ~ ~ Sp(H)Sq(H)* 
p=l q=l 

x exp [i27rH • (tp - tq ) ]  exp [i27rHpq. r] 

(3.2) 

with Hpq = H ( R p -  Rq). Expression (A.2) (Harada et 
al., 1981; Rius & Miravitlles, 1986)allows the compu- 
tation of IF(H)[ 2 as a continuous function from r. 
Hence, the expected value of [F(H)] 2 can be obtained 
from 

IF(H) 2xp=(I /V)  ~ F(H,r ) [  2 dr 
v 

with 

ml~N ml~H 
= e(H) 2 ~" ~'. Sp(H)Sq(H)* 

p=l q=l 

xexp[i27rH.( tp- tq)]I(Hpq)  (A.3) 

l (Hpq)=(1/V)  ~ exp[i27rHpq.r]dr .  (A.4) 
v 

The integral I(Hpq) is always zero unless Hpq = 0, i.e. 
when p - -q ,  in which case it is unity. Consequently, 
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(A.3) reduces to 
~rl/E H 

[F(H)I~x~ = e(H): X Sp(H) 2 
p=l 

m 
--6(H) Z [S,(H)I:. 

p=l 
(A.5) 

Now imagine that the complete molecular group of 
size N / m  is replaced by a smaller fragment of size 
n, so that the unit cell also contains m ( N / m - n )  
randomly distributed atoms. If (A.5) is modified to 
include their contribution, it follows that 

N-rim 
IF(H)I~x~= e(H) Z Z]+e(H) ~ IS~(H)I :. 

j= l  p=l 
(A.6) 

Finally, expression of IS~(H)] ~ in terms of the 
interatomic vectors r j - r k  results in the desired 
expression (4). 
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Abstract Introduction 
The molecular dynamics (MD) method has been 
adapted for refinement of the structures of helical 
macromolecular aggregates against X-ray fiber 
diffraction data. To test the effectiveness of the 
method, refinements of the tobacco mosaic virus 
structure were carried out against a set of simulated 
fiber diffraction intensities using the MD method as 
well as the conventional restrained least-squares 
(RLS) method. The MD refinement converged to a 
very low R factor and produced a structure with 
generally statisfactory stereochemistry, while the RLS 
refinement was trapped at a local energy minimum 
with a larger R factor. Results suggest that the 
effective experimental radius of convergence of the 
MD method is significantly greater than that of the 
RLS method. Even when the initial structure is too 
far from the true structure to allow direct refinement, 
the MD method is able to find local minima that 
resemble the true structure sufficiently to allow 
improved phasing and thus lead to interpretable 
difference maps for model rebuilding. 

Fiber diffraction has been a very effective method for 
the determination of the molecular structures of 
filamentous macromolecular assemblies such as 
viruses, cytoskeletal elements, nucleic acids and poly- 
saccharides. The component parts of these assemblies 
are often difficult or impossible to crystallize because 
of their natural tendency to form filaments and, even 
if they can be crystallized, the crystal structures do 
not usually reveal the important intermolecular inter- 
actions that are often the most biologically significant 
aspect of the molecular structure. Fiber diffraction is 
therefore the preferred method of analysis for these 
systems. 

The defining property of a fiber diffraction speci- 
men is that the diffracting units are randomly oriented 
about an axis, the fiber axis. Specimens may in fact 
be fibers, oriented gels or even stacks of sheet-like 
structures such as membranes. As a result of the 
random orientation about the axis, the fiber diffrac- 
tion pattern is the cylindrical average of the diffraction 
pattern to be expected from one particle (in the 
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